Next: Chi-squared Random Variable, Previous: Student’s t Random Variable, Up: Functions and Variables for continuous distributions [Contents][Index]
Let \(ncp\) be the non-centrality parameter, \(n\) be the degrees of freedom for the non-central Student’s \(t\) random variable.
Then let \(X\) be a \({\it Normal}(n, ncp)\) and \(S^2\) be an independent \(\chi^2\) random variable with \(n\) degrees of freedom, the random variable
has a non-central Student’s \(t\) distribution with non-centrality parameter \(ncp\).
Returns the value at x of the density function of a noncentral Student random variable
\({\it nc\_t}(n, ncp)\)
, with \(n>0\) degrees of freedom and noncentrality parameter \(ncp\). To make use of this function, write first load("distrib").
The pdf is
where
and \(\mu\) is the non-centrality parameter \(ncp\).
Sometimes an extra work is necessary to get the final result.
(%i1) load ("distrib")$
(%i2) expand(pdf_noncentral_student_t(3,5,0.1));
rat: replaced 0.01889822365046136 by 15934951/843198350 = 0.01889822365046136
rat: replaced -8.734356480209641 by -294697965/33740089 = -8.734356480209641
rat: replaced 4.136255165816327 by 51033443/12338079 = 4.136255165816332
rat: replaced 1.08061432164203 by 56754827/52520891 = 1.08061432164203
rat: replaced 0.0565127306411839 by 5608717/99246965 = 0.05651273064118384
rat: replaced -300.8069396896258 by -79782423/265228 = -300.8069396896256
rat: replaced 160.6269176184973 by 178374907/1110492 = 160.626917618497
7/2 7/2
0.04296414417400905 5 1.323650307289301e-6 5
(%o2) ------------------------ + -------------------------
3/2 5/2 sqrt(%pi)
2 14 sqrt(%pi)
7/2
1.94793720435093e-4 5
+ ------------------------
%pi
(%i3) float(%); (%o3) 0.02080593159405671
Returns the value at x of the distribution function of a noncentral Student random variable \({\it nc\_t}(n, ncp)\) , with \(n>0\) degrees of freedom and noncentrality parameter \(ncp\). This function has no closed form and it is numerically computed.
(%i1) load ("distrib")$
(%i2) cdf_noncentral_student_t(-2,5,-5); (%o2) 0.995203009331975
Returns the q-quantile of a noncentral Student random variable
\({\it nc\_t}(n, ncp)\)
, with \(n>0\) degrees of freedom and noncentrality parameter \(ncp\); in other words, this is the inverse of cdf_noncentral_student_t. Argument q must be an element of \([0,1]\). To make use of this function, write first load("distrib").
Returns the mean of a noncentral Student random variable
\({\it nc\_t}(n, ncp)\)
, with \(n>1\) degrees of freedom and noncentrality parameter \(ncp\). To make use of this function, write first load("distrib").
The mean is
where \(\mu\) is the noncentrality parameter \(ncp\).
(%i1) load ("distrib")$
(%i2) mean_noncentral_student_t(df,k);
df - 1
gamma(------) sqrt(df) k
2
(%o2) ------------------------
df
sqrt(2) gamma(--)
2
Returns the variance of a noncentral Student random variable
\({\it nc\_t}(n, ncp)\)
, with \(n>2\) degrees of freedom and noncentrality parameter \(ncp\). To make use of this function, write first load("distrib").
The variance is
where \(\mu\) is the noncentrality parameter \(ncp\).
Returns the standard deviation of a noncentral Student random variable
\({\it nc\_t}(n, ncp)\)
, with \(n>2\) degrees of freedom and noncentrality parameter \(ncp\). To make use of this function, write first load("distrib").
The standard deviation is
Returns the skewness coefficient of a noncentral Student random variable
\({\it nc\_t}(n, ncp)\)
, with \(n>3\) degrees of freedom and noncentrality parameter \(ncp\). To make use of this function, write first load("distrib").
If \(U\) is a non-central Student’s \(t\) random variable with \(n\) degrees of freedom and a noncentrality parameter \(\mu\) , the skewness is
Returns the kurtosis coefficient of a noncentral Student random variable
\({\it nc\_t}(n, ncp)\)
, with \(n>4\) degrees of freedom and noncentrality parameter \(ncp\). To make use of this function, write first load("distrib").
If \(U\) is a non-central Student’s \(t\) random variable with \(n\) degrees of freedom and a noncentrality parameter \(\mu\) , the kurtosis is
Returns a noncentral Student random variate
\({\it nc\_t}(n, ncp)\)
, with \(n>0\). Calling random_noncentral_student_t with a third argument m, a random sample of size m will be simulated.
The implemented algorithm is based on the fact that if X is a normal random variable \({\it Normal}(ncp, 1)\) and \(S^2\) is a \(\chi^2\) random variable with n degrees of freedom, \(\chi^2(n)\) , then
is a noncentral Student random variable with \(n\) degrees of freedom and noncentrality parameter \(ncp\), \({\it nc\_t}(n, ncp)\) .
To make use of this function, write first load("distrib").