
Maxiplot: Maxima and Gnuplot in LATEX.

September 21, 2013

1 Introduction

For those who do not know Maxima, it is a symbolic calculation program
which can be used to compute derivatives and integrals, solve equations,
find limits, work with vectors and matrices and create graphics, among
many other things. It also adds the possibility to write programs, thus
expanding its capabilities. As if all this was not enough, it is also released
under the GNU General Public License and it can be downloaded for free
at http://maxima.sourceforge.net, where there is also documentation in
several languages (including Spanish).

The purpose of this LATEX package is to provide “programming” capa-
bilities importing the results, without the need of working with various files
and interfaces. Maxima code can be included within the LATEX document.
When the document is processed, a file with extension .mac is generated,
which can be directly processed by Maxima, creating another file with ex-
tension .mxp; when the LATEX document is processed again, that file will be
automatically inserted.

Gnuplot commands can also be inserted, thanks to some additional com-
mands added by J. M. Mira. Thus, in addition to the auxiliary files already
mentioned, another file with extension .gnp will be created, which after
being processed by Gnuplot can be added to the document.

2 Installation

Just copy the file maxiplot.sty into a place where LATEX can find it, or
copy it into the same directory where you have your document. For those
who have used previous versions of maxiplot, notice that in this version no
other files are needed.

1

3 LATEX package maxiplot

3.1 How is it used?

Its usage is simple. Process your document as normally done; for instance,
write in the command line:

latex mydocument.tex

You will find out that a file mydocument.mac has been created in your
working directory. Process that file with Maxima:

maxima -b mydocument.mac

And if you have used Gnuplot commands in your document:
gnuplot mydocument.gnp

Process your LATEX document again, et voilà!.
If your distribution allows it, you can enable the command write18

to have Maxima and Gnuplot automatically run when you process your
LATEX document (you should previously add your installation directory to
the executable search path in you operating system).

3.2 User interface

3.2.1 Maxima.

This section and the following ones show some examples of the use of package
maxiplot. It would be convenient to have some basic knowledge of Maxima
to follow the examples.

This package has an option (for the time being) to allow compatibility
with the pmatrix environment of the amsmath package. Therefore, if you
are going to create matrices with that environment, you should add the
following lines to the document preamble

\usepackage{amsmath}

\usepackage[amsmath]{maxiplot}

The most important environments are maxima and maximacmd. The con-
tents of those environments will be passed to a file with extension .mac to
be processed later on with Maxima. Hence, there can be no LATEX-style
comments within those environments; namely, % cannot be used to start
a comment since that symbol has a special meaning in Maxima. Instead,
comments within those environment should follow the C language syntax
(/* comment */). Commands will be inserted as arguments for a function;
therefore, they must be separated by commas.

2

Let us start with a simple example:

\[%Math mode begin

\begin{maxima}

f: x/(x^3-3*x+2), /* Integrating it */

tex(’integrate(f,x)), /* will show its integral... */

print("="),

tex(integrate(f,x)), /* ...and the result */

print("+K")

\end{maxima}

\] %Math mode end

In the place with this code is found, the result will be:

∫
x

x3 − 3x+ 2
dx = −2 log (x+ 2)

9
+

2 log (x− 1)

9
− 1

3x− 3
+K

There are some environments where a maxima block cannot be included.
In those cases the maxima* variant can be used, which gives output immedi-
ately. That output can be then inserted with the command \maximacurrent,
as in the following example:

\begin{maxima*}

suml(L):=lsum(i,i,L),

printrow(L):=block(

[str:""],

for i:1 step 1 thru length(L)-1 do(

str:concat(str,L[i],"&")),

str:concat(str,L[length(L)],"\\\\"),

print(str)),

xi:[1,2,3,4,5,6],

fi:[3,4,7,10,8,2],

for i:1 while i<=length(xi) do (

printrow([xi[i],fi[i],(fi*xi)[i],(fi*xi^2)[i]])

),

print("\\hline"),

printrow(["",N:suml(fi),fx:suml(fi*xi),fx2:suml(fi*xi^2)])

\end{maxima*}

\begin{center}

\begin{tabular}{|c|c|c|c|c|}

x_i&n_i&$n_i\cdot x_i$&$n_i\cdot x_i^2$\\

\hline

\maximacurrent

3

\end{tabular}

\end{center}

xi ni ni · xi ni · x2i
1 3 3 3
2 4 8 16
3 7 21 63
4 10 40 160
5 8 40 200
6 2 12 72

34 124 514

It is important to keep in mind that the \maximacurrent command will
be replaced by the result of the last maxima block, so it must be used before
any other maxima blocks.

If you would like to use that result later on, or if you are going to use it
at several places in the document, you can add an optional command with
a variable name that will save that content. The previous example might as
well had been implemented in the following way:

\begin{maxima*}[table]

suml(L):=lsum(i,i,L),

printrow(L):=block(

[str:""],

for i:1 step 1 thru length(L)-1 do(

str:concat(str,L[i],"&")),

str:concat(str,L[length(L)],"\\\\"),

print(str)),

xi:[1,2,3,4,5,6],

fi:[3,4,7,10,8,2],

for i:1 while i<=length(xi) do (

printrow([xi[i],fi[i],(fi*xi)[i],(fi*xi^2)[i]])

),

print("\\hline"),

printrow(["",N:suml(fi),fx:suml(fi*xi),fx2:suml(fi*xi^2)])

\end{maxima*}

\begin{center}

\begin{tabular}{|c|c|c|c|c|}

x_i&n_i&$n_i\cdot x_i$&$n_i\cdot x_i^2$\\

\hline

\table

\end{tabular}

\end{center}

4

Notice that when passing “table” as a parameter to maxima* there is
no need to use a backslash (\).

There is a line-mode version of the maxima environment, with similar
usage and options: the command \imaxima (from “inline maxima”).

\[

\overline{x}=\imaxima{tex(xx:fx/N)}\qquad

\sigma^2=\imaxima{tex(sx2:fx2/N-xx^2)}\qquad

\sigma=\imaxima{tex(sqrt(sx2))}

\]

x =
62

17
σ2 =

525

289
σ =

5
√

21

17

In cases when no output is expected, such as defining a function or load-
ing Maxima packages, the maximacmd environment or \imaximacmd com-
mand should be used. These two do not have * variant nor any options.
Furthermore, the Maxima commands inside these must be separated by a
semicolon (;) or, better yet, a dollar sign ($). As an example, let us look at
some of the features of the Maxima/Gnuplot interface. This example shows
the plots of the sin function and its tangent at π

3 :

\begin{maximacmd}

tangent(fx,a):=expand(ev(fx,x=a)

+subst(a,x,diff(fx,x))*(x-a))$

plot2d([sin(x),tangent(sin(x),%pi/3)], [x,-3,3],

[gnuplot_preamble,"set zeroaxis;"],

[gnuplot_term, png],

[gnuplot_out_file,"./\jobname2D.png"])$

\end{maximacmd}

\begin{center}

\mxpIncludegraphics[scale=0.60]{\jobname2D.png}

\end{center}

5

This code creates a png format file maxiplot_en2D.png:

The environments introduced so far can contain LATEX commands which
will be replaced before passing them to the mac file. Sometimes this feature
might not be desired and could lead to problems with certain strings. The
environments vmaxima and vmaximacmd solve this problem; their usage is
similar to the previous environments, but their content is passed literally.
These environments are based on the verbatim LATEX package.

6

3.2.2 Gnuplot

While Maxima can create graphics via Gnuplot , sometimes it might be
preferable to work directly with this last program. In order to do that,
the environments gnuplot and its verbatim version vgnuplot are used.

Here is a 3D example

\begin{gnuplot}

set term png crop enhanced font "calibri, 10"

set output "toros.png"

set parametric

set urange [0:2*pi]

set vrange [-pi:pi]

set isosamples 36,24

set hidden3d

set view 75,15,1,1

unset key

set ticslevel 0

x1(u,v)=cos(u)+.5*cos(u)*cos(v)

y1(u,v)=sin(u)+.5*sin(u)*cos(v)

z1(u,v)=.5*sin(v)

x2(u,v)=1+cos(u)+.5*cos(u)*cos(v)

y2(u,v)=.5*sin(v)

z2(u,v)=sin(u)+.5*sin(u)*cos(v)

set multiplot

splot x1(u,v), y1(u,v), z1(u,v) w pm3d, x2(u,v), y2(u,v), z2(u,v) w pm3d

splot x1(u,v), y1(u,v), z1(u,v) lt 3, x2(u,v), y2(u,v), z2(u,v) lt 5

\end{gnuplot}

\begin{center}

\mxpIncludegraphics[scale=0.75]{toros.png}

\end{center}

7

Let us examine the \mxpIncludegraphics command: its usage is the
same as includegraphics from package graphicx; in fact, it just makes
sure that the graphic file exists before invoking that macro.

3.3 Problems

This is an experimental version; many of the capabilities of Maxima have
not been tested and it has not been tried with the most important LATEX
packages. Thus, it will surely need some tweaking.

However, I think that most of the problems will appear when showing
certain outputs. For instance, if the result of a computation is too long, it
will not be easy to break it into several lines (except if one works in Maxima
and then copies the result to the document, of course).

Other possible problems can be addressed from within the LATEX docu-
ment. By default, Maxima orders expressions by inverse alphabetical order;
hence, if we type:

$$\imaxima{tex(x+y+z+t=0)}$$

we get:
z + y + x+ t = 0

That can be avoided by using Maxima functions ordergreat and unorder:

\imaximacmd{ordergreat(x,y,z,t)$}

$$\imaxima{tex(x+y+z+t=0)}$$

\imaximacmd{unorder()$}

Furthermore, if we would like to align several equations, we will need to
dive a little deeper:

\begin{maximacmd}

ordergreat(x,y,z)$

:lisp(defprop mequal (&=) texsym)

\end{maximacmd}

\begin{maxima*}

eq1:a-2*b=x+y,

eq2:b=2*x-3*y+2*z,

tex(eq1),

print("\\\\"),

tex(eq2)

\end{maxima*}

\begin{maximacmd}

unorder()$

:lisp(defprop mequal (=) texsym)

\end{maximacmd}

8

a− 2 b = x+ y (1)

b = 2x− 3 y + 2 z (2)

4 A few last words

As I mentioned before, this is an experimental package that will probably
need some amendments and additions, so any ideas or comments will be
welcome.

José Miguel M. Planas
<nohaim@gmail.com>

(English translation by Jaime Villate)

9

