1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | 1 1 1 1 1 1 1 1 1 1 1 30 30 30 30 30 30 30 30 12 4 1 3 8 3 2 1 5 4 4 4 23 2 21 17 13 13 13 13 13 13 4 4 4 4 17 17 10 7 7 7 17 21 21 21 3 3 1 1 2 2 2 18 18 18 18 1 18 4 14 | // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunSoft, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== // // double log1p(double x) // // Method : // 1. Argument Reduction: find k and f such that // 1+x = 2^k * (1+f), // where sqrt(2)/2 < 1+f < sqrt(2) . // // Note. If k=0, then f=x is exact. However, if k!=0, then f // may not be representable exactly. In that case, a correction // term is need. Let u=1+x rounded. Let c = (1+x)-u, then // log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), // and add back the correction term c/u. // (Note: when x > 2**53, one can simply return log(x)) // // 2. Approximation of log1p(f). // Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) // = 2s + 2/3 s**3 + 2/5 s**5 + ....., // = 2s + s*R // We use a special Reme algorithm on [0,0.1716] to generate // a polynomial of degree 14 to approximate R The maximum error // of this polynomial approximation is bounded by 2**-58.45. In // other words, // 2 4 6 8 10 12 14 // R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s // (the values of Lp1 to Lp7 are listed in the program) // and // | 2 14 | -58.45 // | Lp1*s +...+Lp7*s - R(z) | <= 2 // | | // Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. // In order to guarantee error in log below 1ulp, we compute log // by // log1p(f) = f - (hfsq - s*(hfsq+R)). // // 3. Finally, log1p(x) = k*ln2 + log1p(f). // = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) // Here ln2 is split into two floating point number: // ln2_hi + ln2_lo, // where n*ln2_hi is always exact for |n| < 2000. // // Special cases: // log1p(x) is NaN with signal if x < -1 (including -INF) ; // log1p(+INF) is +INF; log1p(-1) is -INF with signal; // log1p(NaN) is that NaN with no signal. // // Accuracy: // according to an error analysis, the error is always less than // 1 ulp (unit in the last place). // // Constants: // The hexadecimal values are the intended ones for the following // constants. The decimal values may be used, provided that the // compiler will convert from decimal to binary accurately enough // to produce the hexadecimal values shown. // // Note: Assuming log() return accurate answer, the following // algorithm can be used to compute log1p(x) to within a few ULP: // // u = 1+x; // if(u==1.0) return x ; else // return log(u)*(x/(u-1.0)); // // See HP-15C Advanced Functions Handbook, p.193. // var ln2_hi = 6.93147180369123816490e-01; // 3fe62e42 fee00000 var ln2_lo = 1.90821492927058770002e-10; // 3dea39ef 35793c76 var two54 = 1.80143985094819840000e+16; // 43500000 00000000 var Lp1 = 6.666666666666735130e-01; // 3FE55555 55555593 var Lp2 = 3.999999999940941908e-01; // 3FD99999 9997FA04 var Lp3 = 2.857142874366239149e-01; // 3FD24924 94229359 var Lp4 = 2.222219843214978396e-01; // 3FCC71C5 1D8E78AF var Lp5 = 1.818357216161805012e-01; // 3FC74664 96CB03DE var Lp6 = 1.531383769920937332e-01; // 3FC39A09 D078C69F var Lp7 = 1.479819860511658591e-01; // 3FC2F112 DF3E5244 function log1p (x) { var hx = _DoubleHi(x); var ax = hx & 0x7fffffff; var k = 1; var f = 0; var hu = 1; var c = 0; var u = 0; if (hx < 0x3fda827a) { // x < 0.41422 if (ax >= 0x3ff00000) { // x <= -1: log1p(-1) = inf, log1p(x<-1) = NaN if (x == -1) { return -two54/0; } else { return (x - x) / (x - x); } } if (ax < 0x3e200000) { // |x| < 2^-29 if ((two54 + x > 0) && (ax < 0x3c900000)) { // |x| < 2^-54, so just return x return x; } else { return x - x*x*0.5; } } // (int) 0xbfd2bec3 = -0x402d413d if ((hx > 0) || (hx <= -0x402D413D)) { // -.2929 < x < 0.41422 k = 0; f = x; hu = 1; } } if (hx >= 0x7ff00000) return x + x; if (k != 0) { if (hx < 0x43400000) { // x < 9.007199254740992d15 u = 1 + x; hu = _DoubleHi(u); k = (hu >> 20) - 1023; c = (k > 0) ? 1 - (u - x) : x - (u - 1); c = c / u; /* istanbul ignore if */ //if (verbose > 0) console.log("x, u, hu, k, c = " + x + ", " + u + ", " + hu + ", " + k + ", " + c); } else { u = x; hu = _DoubleHi(u); k = (hu >> 20) - 1023; c = 0; } hu = hu & 0xfffff; if (hu < 0x6a09e) { // Normalize u u = _ConstructDouble(hu | 0x3ff00000, _DoubleLo(u)); } else { ++k; u = _ConstructDouble(hu | 0x3fe00000, _DoubleLo(u)); hu = (0x00100000 - hu) >> 2; } f = u - 1; } var hfsq = 0.5 * f * f; /* istanbul ignore if */ //if (verbose > 0) console.log("hu, f = " + hu + ", " + f); if (hu == 0) { // |f| < 2^-20; console.log("k = " + k); if (f == 0) { Iif (k == 0) { return 0.0; } else { return k*ln2_hi + (c + k*ln2_lo); } } var R = hfsq * (1 - (2/3)*f); Iif (k == 0) { return f - R; } else { return k*ln2_hi-((R-(k*ln2_lo+c))-f); } } var s = f/(2.0+f); var z = s*s; var R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); /* istanbul ignore if */ Iif (verbose > 0) console.log("hfsq, s, z, r = " + hfsq + ", " + s + ", " + z + ", " + R); if (k==0) { return f-(hfsq-s*(hfsq+R)); } else { return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); } } |