1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | 1 1 1 1 1 1 1 1 1 1 1 1 718 718 718 718 718 718 718 718 718 707 11 718 718 1 718 9 6 3 1 2 3 2 4 3 3 710 1 710 647 1 647 19 1 19 17 17 17 2 2 2 628 628 1 628 628 628 647 647 63 6 1 6 6 57 1 57 704 1 704 704 704 704 704 704 57 647 647 647 2 645 17 1 16 628 5 1 5 5 5 1 5 623 524 524 524 99 99 99 99 623 | // // ==================================================== // Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. // // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== // // Translated to Javascript by Raymond Toy (rtoy@google.com) // expm1(x) // Returns exp(x)-1, the exponential of x minus 1. // // Method // 1. Argument reduction: // Given x, find r and integer k such that // // x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 // // Here a correction term c will be computed to compensate // the error in r when rounded to a floating-point number. // // 2. Approximating expm1(r) by a special rational function on // the interval [0,0.34658]: // Since // r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... // we define R1(r*r) by // r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) // That is, // R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) // = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) // = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... // We use a special Remes algorithm on [0,0.347] to generate // a polynomial of degree 5 in r*r to approximate R1. The // maximum error of this polynomial approximation is bounded // by 2**-61. In other words, // R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 // where Q1 = -1.6666666666666567384E-2, // Q2 = 3.9682539681370365873E-4, // Q3 = -9.9206344733435987357E-6, // Q4 = 2.5051361420808517002E-7, // Q5 = -6.2843505682382617102E-9; // (where z=r*r, and the values of Q1 to Q5 are listed below) // with error bounded by // | 5 | -61 // | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 // | | // // expm1(r) = exp(r)-1 is then computed by the following // specific way which minimize the accumulation rounding error: // 2 3 // r r [ 3 - (R1 + R1*r/2) ] // expm1(r) = r + --- + --- * [--------------------] // 2 2 [ 6 - r*(3 - R1*r/2) ] // // To compensate the error in the argument reduction, we use // expm1(r+c) = expm1(r) + c + expm1(r)*c // ~ expm1(r) + c + r*c // Thus c+r*c will be added in as the correction terms for // expm1(r+c). Now rearrange the term to avoid optimization // screw up: // ( 2 2 ) // ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) // expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) // ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) // ( ) // // = r - E // 3. Scale back to obtain expm1(x): // From step 1, we have // expm1(x) = either 2^k*[expm1(r)+1] - 1 // = or 2^k*[expm1(r) + (1-2^-k)] // 4. Implementation notes: // (A). To save one multiplication, we scale the coefficient Qi // to Qi*2^i, and replace z by (x^2)/2. // (B). To achieve maximum accuracy, we compute expm1(x) by // (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) // (ii) if k=0, return r-E // (iii) if k=-1, return 0.5*(r-E)-0.5 // (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) // else return 1.0+2.0*(r-E); // (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) // (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else // (vii) return 2^k(1-((E+2^-k)-r)) // // Special cases: // expm1(INF) is INF, expm1(NaN) is NaN; // expm1(-INF) is -1, and // for finite argument, only expm1(0)=0 is exact. // // Accuracy: // according to an error analysis, the error is always less than // 1 ulp (unit in the last place). // // Misc. info. // For IEEE double // if x > 7.09782712893383973096e+02 then expm1(x) overflow // // Constants: // The hexadecimal values are the intended ones for the following // constants. The decimal values may be used, provided that the // compiler will convert from decimal to binary accurately enough // to produce the hexadecimal values shown. var huge = 1e300; var tiny = 1e-300; var o_threshold = 7.09782712893383973096e+02; // 0x40862E42, 0xFEFA39EF var ln2_hi = 6.93147180369123816490e-01; // 0x3fe62e42, 0xfee00000 var ln2_lo = 1.90821492927058770002e-10; // 0x3dea39ef, 0x35793c76 var invln2 = 1.44269504088896338700e+00; // 0x3ff71547, 0x652b82fe // scaled coefficients related to expm1 var Q1 = -3.33333333333331316428e-02; // BFA11111 111110F4 var Q2 = 1.58730158725481460165e-03; // 3F5A01A0 19FE5585 var Q3 = -7.93650757867487942473e-05; // BF14CE19 9EAADBB7 var Q4 = 4.00821782732936239552e-06; // 3ED0CFCA 86E65239 var Q5 = -2.01099218183624371326e-07; // BE8AFDB7 6E09C32D function expm1(x) { var y; var hi; var lo; var k; var t; var c; var hx = _DoubleHi(x); var xsb = hx & 0x80000000; // sign bit of x // y = |x| if (xsb == 0) y = x; else y = -x; hx &= 0x7fffffff; // High word of |x| // Filter out huge and non-finite argument /* istanbul ignore if */ Iif (verbose > 0) console.log("hx = " + hx); if (hx >= 0x4043687a) { // if |x| ~=> 56*ln2 if (hx >= 0x40862e42) { // if |x| >= 709.78 if (hx >= 0x7ff00000) { if (((hx & 0xfffff) | _DoubleLo(x)) != 0) { // NaN return x + x; } else { // expm1(inf) = inf; expm1(-inf) = -1 return xsb == 0 ? x : -1.0; } } if (x > o_threshold) { // Overflow return huge * huge; } } if (xsb != 0) { // x < -56*ln2 so return -1, with inexact. For Javascript, // we can probably skip the stuff to set the inexact flag // and just return -1. // I don't think the else case is ever reachable because x // < -38 and tiny = 1e300 so x + tiny < 0 always. JS // doesn't have an inexact, so maybe just delete the if // test? /* istanbul ignore else */ Eif (x + tiny < 0) // This raises inexact. return tiny - 1; } } // Argument reduction /* istanbul ignore if */ Iif (verbose > 0) console.log("Arg reduction"); if (hx > 0x3fd62e42) { // if |x| > 0.5 * ln2 /* istanbul ignore if */ Iif (verbose > 0) console.log("hx > 0.5*log2"); if (hx < 0x3ff0a2b2) { // and |x| < 1.5 * ln2 /* istanbul ignore if */ Iif (verbose > 0) console.log("hx < 1.5 * log2"); if (xsb == 0) { hi = x - ln2_hi; lo = ln2_lo; k = 1; } else { hi = x + ln2_hi; lo = -ln2_lo; k = -1; } } else { // k = (invln2 * x + ((xsb == 0) ? 0.5 : -0.5)); k = (invln2 * x + ((xsb == 0) ? 0.5 : -0.5)) | 0; /* istanbul ignore if */ Iif (verbose > 0) console.log("invln2*x, k = " + (invln2*x) + ", " + k); t = k; // t*ln2_hi is exact here. hi = x - t * ln2_hi; lo = t * ln2_lo; } x = hi - lo; c = (hi - x) - lo; } else if (hx < 0x3c900000) { // When |x| < 2^-54, we can // return x, setting inexact flags // when x != 0. The inexact stuff is probably not needed in // Javascript. /* istanbul ignore if */ Iif (verbose > 0) console.log("hx < 0x3c900000"); t = huge + x; return x - (t - (huge + x)); } else { /* istanbul ignore if */ Iif (verbose > 0) console.log("Fall through"); k = 0; } // x is now in primary range /* istanbul ignore if */ Iif (verbose > 0) console.log("In range, k = " + k); var hfx = 0.5 * x; var hxs = x * hfx; var r1 = 1 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); t = 3 - r1 * hfx; var e = hxs * ((r1 - t) / (6 - x*t)); if (k == 0) { // c is 0 return x - (x*e - hxs); } else { e = (x * (e - c) - c); e -= hxs; if (k == -1) return 0.5 * (x - e) - 0.5; if (k == 1) { if (x < -0.25) return -2 * (e - (x + 0.5)); else return 1 + 2 * (x - e); } if (k <= -2 || k > 56) { /* istanbul ignore if */ Iif (verbose > 0) console.log("k <= -2 || k > 56: k = " + k); // suffice to return exp(x)+1 y = 1 - (e - x); // Add k to y's exponent y = _ConstructDouble(_DoubleHi(y) + (k << 20), _DoubleLo(y)); /* istanbul ignore if */ Iif (verbose > 0) console.log("New y = " + y + ", result = " + (y - 1)); return y - 1; } if (k < 20) { // t = 1 - 2^k t = _ConstructDouble(0x3ff00000 - (0x200000 >> k), 0); y = t - (e - x); // Add k to y's exponent y = _ConstructDouble(_DoubleHi(y) + (k << 20), _DoubleLo(y)); } else { // t = 2^-k t = _ConstructDouble((0x3ff - k) << 20, 0); y = x - (e + t); y += 1; // Add k to y's exponent y = _ConstructDouble(_DoubleHi(y) + (k << 20), _DoubleLo(y)); } } return y; } |