Code coverage report for fdlibm/exp.js

Statements: 100% (54 / 54)      Branches: 100% (24 / 24)      Functions: 100% (1 / 1)      Lines: 100% (54 / 54)      Ignored: none     

All files » fdlibm/ » exp.js
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176                                                                                                                                                  1 1 1 1 1   1   1 1 1 1 1 1   1 4416 4416 4416   4416 4416 4416     4416   15 3   1     2     12 3   9 3         4407   4399       9 1     8 8 8   4390   4390   4390 4390   4398 8   6   2       4400 4400       4400 2   4398     4398   4395 4395     3     3       3      
//
// ====================================================
// Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
//
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice 
// is preserved.
// ====================================================
//
 
// __ieee754_exp(x)
// Returns the exponential of x.
//
// Method
//   1. Argument reduction:
//      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
//      Given x, find r and integer k such that
//
//               x = k*ln2 + r,  |r| <= 0.5*ln2.  
//
//      Here r will be represented as r = hi-lo for better 
//      accuracy.
//
//   2. Approximation of exp(r) by a special rational function on
//      the interval [0,0.34658]:
//      Write
//          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
//      We use a special Remes algorithm on [0,0.34658] to generate 
//      a polynomial of degree 5 to approximate R. The maximum error 
//      of this polynomial approximation is bounded by 2**-59. In
//      other words,
//          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
//      (where z=r*r, and the values of P1 to P5 are listed below)
//      and
//          |                  5          |     -59
//          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2 
//          |                             |
//      The computation of exp(r) thus becomes
//                             2*r
//              exp(r) = 1 + -------
//                            R - r
//                                 r*R1(r)      
//                     = 1 + r + ----------- (for better accuracy)
//                                2 - R1(r)
//      where
//                               2       4             10
//              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
//      
//   3. Scale back to obtain exp(x):
//      From step 1, we have
//         exp(x) = 2^k * exp(r)
//
// Special cases:
//      exp(INF) is INF, exp(NaN) is NaN;
//      exp(-INF) is 0, and
//      for finite argument, only exp(0)=1 is exact.
//
// Accuracy:
//      according to an error analysis, the error is always less than
//      1 ulp (unit in the last place).
//
// Misc. info.
//      For IEEE double 
//          if x >  7.09782712893383973096e+02 then exp(x) overflow
//          if x < -7.45133219101941108420e+02 then exp(x) underflow
//
// Constants:
// The hexadecimal values are the intended ones for the following 
// constants. The decimal values may be used, provided that the 
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
//
 
var half = [0.5, -0.5];
var twom1000= 9.33263618503218878990e-302;      // 2**-1000=0x01700000,0
var o_threshold=  7.09782712893383973096e+02;   //  0x40862E42, 0xFEFA39EF 
var u_threshold= -7.45133219101941108420e+02;   //  0xc0874910, 0xD52D3051 
var ln2hi   =[ 6.93147180369123816490e-01,      //  0x3fe62e42, 0xfee00000 
                  -6.93147180369123816490e-01]; //  0xbfe62e42, 0xfee00000 
var ln2lo   =[ 1.90821492927058770002e-10,      //  0x3dea39ef, 0x35793c76 
                  -1.90821492927058770002e-10]; //  0xbdea39ef, 0x35793c76 
var invln2 =  1.44269504088896338700e+00;       //  0x3ff71547, 0x652b82fe 
var P1   =  1.66666666666666019037e-01;         //  0x3FC55555, 0x5555553E 
var P2   = -2.77777777770155933842e-03;         //  0xBF66C16C, 0x16BEBD93 
var P3   =  6.61375632143793436117e-05;         //  0x3F11566A, 0xAF25DE2C 
var P4   = -1.65339022054652515390e-06;         //  0xBEBBBD41, 0xC5D26BF1 
var P5   =  4.13813679705723846039e-08;         //  0x3E663769, 0x72BEA4D0 
 
function exp (x) {
    var k = 0;
    var hi = 0;
    var lo = 0;
 
    var hx = _DoubleHi(x);
    var xsb = (hx >> 31) & 1;   // sign bit of x
    hx &= 0x7fffffff;           // High word of |x|
 
    // Filter out non-finite argument
    if (hx >= 0x40862e42) {
        // \x| >= 709.78...
        if (hx >= 0x7ff00000) {
            if (isNaN(x)) {
                // exp(NaN) = NaN. (Should we create a new NaN?)
                return x;
            }
            // exp(-inf) = 0, exp(inf) = inf
            return (xsb == 0) ? x : 0;
        }
        // x > threshold so overflow to infinity
        if (x > o_threshold)
            return Infinity;
        // x < threshold so underflow to 0.
        if (x < u_threshold) {
            return 0;
        }
    }
 
    // Argument reduction
    if (hx > 0x3fd62e42) {
        // |x| > 0.5 ln2
        if (hx < 0x3ff0a2b2) {
            // New case not in fdlibm. Check for x = 1 and return
            // Math.E There should be tests that exp(x) is still
            // monotonic with this change!
            if (x == 1) {
                return Math.E;
            }
            // |x| < 1.5*ln2
            hi = x - ln2hi[xsb];
            lo = ln2lo[xsb];
            k = 1 - xsb - xsb;
        } else {
            k = (invln2 * x + half[xsb]) | 0;
            //console.log("x > 1.5*ln2, k = " + k);
            var t = k;
            // t*ln2hi is exact here
            hi = x - t * ln2hi[0];
            lo = t * ln2lo[0];
        }
        x = hi - lo;
    } else if (hx < 0x3e300000) {
        // |x| < 2^-28
        return 1 + x;
    } else {
        k = 0;
    }
 
    // x is now in primary range
    var t = x * x;
    var c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
 
    //console.log("exp(" + x + "), k = " + k);
    //console.log("c = " + c);
    if (k == 0) {
        return 1 - ((x*c)/(c - 2) - x);
    }
    var y = 1 - ((lo-(x*c)/(2.0-c))-hi);
 
    //console.log("y = " + y);
    if (k >= -1021) {
        // add k to y's exponent
        y = _ConstructDouble((k << 20) + _DoubleHi(y), _DoubleLo(y));
        return y;
    } else {
        // add k to y's exponent
        y = _ConstructDouble(((k + 1000) << 20) + _DoubleHi(y), _DoubleLo(y));
        //console.log("new y = " + y);
        //console.log(" y parts = " + _DoubleHi(y) + ", " + _DoubleLo(y));
        y = y * twom1000;
        //console.log("scaled y = " + y);
        //console.log(" y parts = " + _DoubleHi(y) + ", " + _DoubleLo(y));
        
        return y;
    }
}